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ABSTRACT 

We consider decompositions of the incidence structure of points and lines of 
PG( n, 9) (n 2 3) with equally many point and line classes. Such a decomposition, if 
line-tactical, must also be point-tactical. (This holds more generally in any S-design.) 
We conjecture that such a tactical decomposition with more than one class has either 
a singleton point class, or just two point classes, one of which is a hyperplane. Using 
the previously mentioned result, we reduce the conjecture to the case n = 3, and 
prove it when q2 + 4 + 1 is prime and for very small values of q. The truth of the 
conjecture would imply that an irreducible collineation group of PG( n, q) (n > 3) 
with equally many point and line orbits is line-transitive (and hence known). 

1. INTRODUCTION 

It is well known that a collineation group of a finite projective space 
PG(n, 9) has at least as many orbits on lines as on points. This paper reports 
on an attempt to determine which collineation groups have equally many 
point orbits and line orbits. For n = 2, any group has this property, and the 
problem is simply the determination of all subgroups of PIL(3,9); we ignore 
this case. However, for n > 2, the position is very different. We conjecture 
that such a group is line-transitive, or fixes a hyperplane and acts line-transi- 
tively on it, or (dually) fixes a point and acts line-transitively on the quotient 
space. (Note that all line-transitive collineation groups have been determined: 
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see [l], [3].) We prove the conjecture for certain values of 9, including all 
9 < 9 (though detailed calculations for 9 = 7 are not given), and for reducible 
groups. The case 9 = 2 has been independently handled by Sax1 [4]. 

The combinatorial analogue of our situation is a tactical decomposition of 
the point-line design of PG(n, 9) with equally many point and line classes. 
We show that such a decomposition induces a decomposition with the same 
property of any 3dimensional subspace, even when nothing is known about 
the group induced on such a subspace. Thus we need consider in detail only 
the case n = 3. In fact, some of our results have greater generality. 

In Section 2 we prove that a block-tactical decomposition of a 2design 
with equally many point and block classes is necessarily point-tactical. We 
also obtain numerical information about such a decomposition. In Section 3, 
we consider certain “special” classes of lines in PG(3,9), which can be 
defined by a number of properties, including the condition that such a class 
contains a fixed number of lines of any spread. A line class in a symmetric 
tactical decomposition is special, but not conversely. Combining the ap 
proaches, we are able to describe fairly precisely the symmetric tactical 
decompositions of PG(3,9) for some 9; this is done in Section 4, and the 
consequences for our problem on collineation groups are drawn in Section 5. 
The problems of determining the symmetric tactical decompositions and the 
special line classes in PG(3,9) can be regarded as successive combinatorial 
generalizations of our group-theoretic problem. We remark that even if the 
original problem were solved by other methods, these geometric questions 
would still be of interest. 

2. SYMMETRIC TACTICAL DECOMPOSITIONS 

Let Pr be an incidence structure of points and blocks. Suppose the points 
are partitioned into nonempty classes ‘?i,. , . , 2Ps, and the blocks into non- 
empty classes % i, . , . , ilti,, This decomposition is called block-tactical if there is 
an s X t matrix A = (a,i) such that 1 Tins1 = ali for any BE ?ai; point-tactical 
if there is an s X t matrix B = ( b,i) such that I(p) fFB, 1 = bij for any p E (J?~; 
and tactical if it is both point- and block-tactical. [We identify a block with 
the set of points incident with it; and (p) denotes the set of blocks incident 
with p.] 

The following result is a well-known consequence of Block’s lemma (see 

[2, p. 211): 

PROPOSITION 2.1. Suppose the incidence matrix of !J has rank equal to 
the number of points. Then, for any block-tactical decomposition, the matrix 
A has rank s, and in particular t 2 s. 
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An important class of incidence structures satisfying the hypothesis of 
Proposition 2.1 is the class of Zdesigns: see the standard proof of Fisher’s 
inequality [2, p. 201. For these, there is a remarkable consequence of equality 
in the above inequality. We use the usual parameters T, k, X for 2designs. 

PROPOSITION 2.2. Suppose Pr is a 2design. Then a block-tactical decom- 
position with equally many point and block classes is tactical. 

Proof. Let V, (V,) denote the vector space of functions from the point 
set (block set) to Q. Let fi, . . . , f;. be the characteristic functions of the point 
classes (in V,), and g,, . . . , g, those of the block classes (in V,). The incidence 
matrix of the design represents the linear transformation 01: V, + V, defined by 
the rule 

(fa)W= Ix f(P). 
PEB 

(Our earlier remarks imply that (Y is a monomorphism.) 
From the definition of a block-tactical decomposition, we have 

$a= f: giaji. 
i=l 

Now WY’ = (r - h)Z + hJ, where I and J are represented by the identity and 
all-l matrices. So 

j+lt = J$( r - h)Z + XJ] 

=(r--X)fi‘+hvje, 

where e denotes the constant function with value 1, and vi is the cardinality of 
Ti. By Proposition 2.1, A is nonsingular; let C = (cii) be its inverse. Then 

E Cjh( _(a)a” = E (gi”t)aijcjh 

i i,i 

= gpt. 

Thus g&, whose value at p is the number of blocks of the hth class 
containing p, is a known linear combination of f,, . . . ,f,; precisely, g,$ = 
&b&, where bii = (r - A)+ + X&vkcki. Thus, the decomposition is point- 
tactical. H 
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We call a tactical decomposition of a 2design symmetric if it has equally 
many point and block classes. 

REMARK. Proposition 2.1 can be proved by observing that cx is a mono 
morphism and A is a matrix representing its restriction to the subspace 

(f,>...>f,>. 

Let V be the diagonal matrix (v,c$~), and W the matrix (wiaii), where 
EC;( = 1 %,I. Easy counting arguments show that AB’ = (r - X)Z + XVJ, JA = kJ, 
BJ = rJ, and VB = A W. Then 

AB’A=(r-h)A+XVJA 

= (r - X)A + hkVJ 

=(r-h)A+(Ak/r)VBJ 

= (r - h)A +(Xk,‘r)AWJ. 

Since A is nonsingular, 

B’A=(r-h)Z+(Ak,‘r)WJ. (*I 

This equation contains nontrivial information. For example: 

COROLLARY 2.3. Zf (T, X k) = 1, then each block class has size divisible 
by r; and if in addition r is prime, then there is a point class meeting every 
block in 0 or c points, for some constant c. 

Proof. The first assertion is clear from ( *). If r is prime, then rjv, so 
some point class has size vi coprime to r. From the equation VB = AW, we 
see that bij is divisible by r for all i. But a point of Yi lies on only r blocks. So 
all blocks meeting 6Yi lie in the same class, and the result follows. n 

COROLLARY 2.4. If h = 1, then the number of blocks of 91~ meeting a 
given block of ?iii is (Xk/r)wi +(r - k - h)Sii. 

Proof. Immediate from (*), since such blocks meet in just one point. n 

COROLLARY 2.5. rk(r - h)“-lIIv,/lIwi and rk(r - h)“-‘flwi/nvi are 
both integer squares. 
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Proof. det A.det B = rk(r - A)‘-‘, and det B/det A = nwi/flvi. So the 
given expressions are (det A)2 and (det B)2. n 

REMARK. Proposition 2.2 is not valid for the wider class of incidence 
structures satisfying the hypotheses of Proposition 2.1. For example, let 4 be 
the structure whose points and blocks are the 2-subsets and Ssubsets of 
{I,...,6}, with incidence = inclusion. Partition the points of into { { 1,2}, 
{3,4}} and its complement. We may regard the members of the first class as 
red edges of the complete graph K,, those of the second class as blue edges. 
Any 3-set contains either one red edge or none at all; the resulting partition of 
the blocks gives rise to a decomposition which is obviously block-tactical, with 
s = t = 2. However, it is not point-tactical: the edge { 1,3} lies in two triples 
containing red edges, { 1,5} lies in one such triple, and {5,6} in none at all. 
We do not know if there is any class of structures more general than 2designs 
for which Proposition 2.2 is valid. 

3. SPECIAL LINE CLASSES IN PG(3,q) 

In this section, we take 4 to be the 2design of points and lines in PG(3, q), 
with r = q2 + q + 1, k = q + 1, X = 1. We use the notation of Section 2. 

PROPOSITION 3.1. Let C be a set of lines of PG(3, q) with characteristic 
function g. Then the following assertions about C are equivalent: 

(i) g lies in the range R(a) of a; 
(ii) g is orthogonal to the kernel &a’) of cx’; 
(iii) for any regulus R, ICfIR[ = I~fIRoPPI, where R’+‘p denotes the 

opposite regulus; 
(iv) there is a number x such that ( CR3 ( = x for any spread S; 
(v) there is a number x such that ( iZ fX I = x for any regular spread S. 

Proof. We have V, = R(a) I K(&), so (i) and (ii) are equivalent. This 
decomposition is invariant under the group G = PGL(4, q) of projectivities; 
and R(a) splits into two Ginvariant subspaces, namely (e) and (e)’ nR( a), 
where e is the constant function with value 1. Since G has rank 3 on the set of 
lines of PG(3, q), V, is the sum of three irreducible Gmodules; so G acts 
irreducibly on K(a’). Thus K(a’) is spanned by any of its nonzero functions 
together with its images under G. If x(T) denotes the characteristic function 
of the set T of lines, the equivalence of (ii) with (iii)-(v) is now shown by 
using the functions x(R) - x(RopP) and x(S) - x(S’) in K(c?), where S and 
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S’ are spreads (or else regular spreads). Of course, by choosing other functions 
in K( CX~ ), we could easily obtain further equivalent conditions. n 

We call a class of lines satisfying the assertions of Proposition 3.1 special; 
the number x in (iv) and (v) is called its parameter. 

PROPOSITION 3.2. Any line class in a symmetric tactical decomposition 
of PG(3, q) is special. 

Proof. Iffi,...,f, are the characteristic functions of the point classes and 

g,,..., g, those of the line classes, we have +=Zg,aii, where A=(a,j) is 

nonsingular; so gi E ( fia,. . .,&a) C R(a) for 1 G i G S. 

PROPOSITION 3.3. Let I? be a special line class with parameter x and 
characteristic function g. Then 

(i) Il?I=x(q’+q+l); 
(ii) for any line L, the number of members off skew to L is [x - g( L)]q’; 
(iii) for any two skew lines L,, L,, the number of members of C skew to 

L, and L, is [x - g(L,)- dLdldq - 1). 

Proof. The group G = PGL(4, q) operates transitively on triples of pair- 
wise skew lines. Hence, for i < 3, the number ni of spreads containing i 
pairwise skew lines depends only on i; and by counting we find that 

nl = n0/(q2 + 4 + I), n2 = n,/q2, n3 = n,/q(q - 1). To prove (i), count 
pairs (L, S), where L is a line of L, and S a spread containing L, to find that 
) f 1 n, = nOx, or IL’ I = x(q2 + q + 1). To prove (ii), count pairs (L’, S), where 
L’ is a line of 15 skew to L, and S a spread containing L and L’. A similar 
argument gives (iii). n 

PROPOSITION 3.4. 

(i) A special line class with parameter 1 consists either of all lines in a 
plane II or of all lines through a point p. 

(ii) A special line class with parameter 2 consists of all lines in a plane n 
or through a point p, where p 4 II. 

Proof. (i): According to Proposition 3.3(ii), if x = 1 then no two lines of I_” 
are disjoint. Any maximal set of pairwise intersecting lines is of one of the 
types given in (i), and has cardinality q2 + q + 1. By Proposition 3.3(i), C itself 
is maximal. 
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(ii): Let C be a special line class with parameter 2. Select skew lines 
L,, L,E C. Then 2(9 + 1) lines of C meet both L, and L,, and no three of 
these are skew. This can only occur if all such lines meet one of L, and L, 

(say L,) in either of two points, and lie in either of two planes on the other. 
We say that L, is of point type and L, of plane type. To justify the 

terminology, we must show that L, is of point type in any skew pair in which 
it occurs, and dually. So suppose that Lh is skew to L,. Then L,flL; is a 
point, p say, and p is joined to exactly two points of L,; so L’, cannot be of 
point type. 

Thus the lines of C are partitioned into two classes, in such a way that 
skew lines belong to different classes. So two lines of the same class meet, 
whence each class is either concurrent or coplanar. The conclusion follows. n 

We conjecture that the only special classes of lines are the empty class: 
those of Proposition 3.4, and the complements of these (with parameters 
0,1,2,9’ - 1, 92, 92 + 1). It follows from Proposition 3.4 that the conjecture is 
true for 9 = 2. 

REMARK. A special class with parameter 2 cannot occur as a line class in 
a symmetric tactical decomposition. For p is the unique point lying only on 
lines of the class C, so it must form a singleton point class; but no line of E in 
lI contains p. 

4. TACTICAL DECOMPOSITIONS OF PG(n, 9) 

Let A( n, 9) be the following assertion: Any symmetric tactical decomposi- 
tion of the point-line design of PG( n, 9) (with more than one point class) 
either has a singleton point class {p} and a line class consisting of all lines on 
p, or has just two point classes (a hyperplane H and its complement) and two 
line classes (the lines in H and those meeting H in a point). 

We conjecture that A(n, 9) holds for all 9 and all n 2 3. In support of the 
conjecture, we offer the following pieces of evidence. 

PROPOSITION 4.1. For any 9 and any n a 3, A(3,9) implies A( n, 9). 

Proof. Suppose we have a tactical decomposition of PG( n, 9), and let E 
be any 3-space. We observe that the induced decomposition of E is block- 
tactical. We can arrange the decomposition matrix A so that the classes 
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represented in E come first; then 

(the 0 because if a line class C is represented in E, then so are all the point 
classes which meet lines in ?). 

Suppose A has size se X to. Since the decomposition of E is block-tactical, 
we have to 2 s0 (by Proposition 2.1); and since A is nonsingular (again by 
Proposition 2.1) we have s0 2 to. So sa = to, and the decomposition of E is 
tactical and symmetric (by Proposition 2.2). 

Now suppose A(3,9) holds. Then a S-space E is of one of three types: 

(i) all points of E lie in the same class, as do all lines of E; 
(ii) E meets some point class in a single point p; 
(iii) E meets just two point classes, one of them in a plane Il. 

Suppose there is a S-space E of type (ii), with distinguished point p. Let L” 
be the line class containing all lines on p (and no other line of E). For any 
S-space E’ such that EnE’ is a plane containing p, all lines on p in En E’ (and 
no other lines of EnE’) belong to c; by A(3,9), E’ is of type (ii), and all its 
lines on p belong to C. Thus every line on p in the whole space, and no other 
line, belongs to 11‘. 

Next, suppose there is a 3-space E of type (iii), but none of type (ii). Let 5’ 
be the point class meeting E in ll. Then ?i’ meets every 3-space in the empty 
set, a plane, the complement of a plane, or the whole space. But, if EnE’ is a 
plane, then ?I’nE’ contains at least a line, and so cannot be empty or the 
complement of a plane. By comiectedness, 5’ meets every 5-space in either 
the whole space or a plane. So 5’ is a subspace, necessarily a hyperplane. 

Finally, if every 3-space meets only one point class, then there is only one 
point class. n 

PROPOSITION 4.2. A(3,9) holds if q2 + 9 + 1 is prime. 

Proof. Take a tactical decomposition of PG(3,9). By Corollary 2.3, there 
is a point class VP and a number h such that 1 Yi’nL 1 = 0 or h + 1 for any line 
L. If h = 0, then !‘? is a singleton; so suppose h > 0. Also, we may suppose 
h < 9. If W is an i-space, then I9nW 1 = 0 or 1+ [( 9’ - 1)/(9 - l)]h; in 
particular, )??I =l+(92+9+l)h. 



TACTICAL DECOMPOSITIONS 99 

Take a line L disjoint from ‘??. The planes through L partition into sets of 
size l+(q+l)h; so 1+(9+l)h divides 1+(9’+9+l)h, whence 1+(9+ 
1)h divides 92. Since 92 E 1 (mod 9 +l), we have [1+(9 +l)h][l+(q +l)g] 
= 92 for some integer g; and h > 0 forces g = 0, h = 9 -1. Then the 
complement of 9 meets every line in 1 or 9 + 1 points, and so is a plane lI; 
and every point of II lies on a line meeting 9, so II is a single point class. H 

This verifies A(3,9) for 11 of the 35 prime powers below 100. The next 
two lemmas aid the study of special values of 9. 

LEMMA 1. lf A is the matrix of a symmetric tactical decomposition of 
PG(n,9)(n~2,9=p”,pprime),then(detA(=(9+l)pbforsomeb. 

Proof Consider first the case n = 2. Then, as in Section 2, det Aadet B 
YZ &(r - X)‘-’ = (9 + 1)29”-‘. Since all column sums of A and ail row sums 
of B are 9 + 1, we have 9 + 11 det A, 9 + 11 det B, and the result follows. 

Now suppose n > 2. Our proof is by induction on the number s of classes. 
The result is clear for s = 1; so suppose s > 1. If there is a plane meeting every 
point class, then the result follows from the preceding paragraph; so suppose 
not. Certainly there is a plane II meeting more than one point class. Order 
the classes so that those represented in II come first. As in the proof of 
Proposition 4.1, we have 

A= 

so det A = det A,.det A,. Now ldet A,1 is 9 + 1 times a power of p, by the 
preceding paragraph. If we amalgamate all the point classes and all the line 
classes represented within II, we obtain a symmetric tactical decomposition 
with fewer classes; its matrix is 

where c is the vector of column sums of C. By the inductive hypothesis, 
1 det A, 1 is a power of p. This proves the lemma. H 

LEMMAS. Let92+9+1=p~L...pPf,wherep,,...,p,aredistinctprimes 

anda 1,. . . ,a, > 0. Then, in any symmetric tactical decomposition of PG(3,9), 
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there is just one point class whose cardinality vi is coprime to pi (for each i); 
we have vi g 1 (mod pyl) and vk f 0 (mod p:l) for k # j. 

Proof. We know that q2 + q + 1 divides the cardinality of each line class. 
Also, Xvi = (q + l)( q2 + l), so there is an index i for which pi] vi. From the 
matrix equation VB = AW, we see that p:e divides every entry of the ith row 
of B. But det A.det B = (q2 + q + l)q”-‘(q + 1)“; so no further row of B can 
be divisible by pi. Thus ppg 1 vk for k # j, whence vi E 1 (mod p:,). n 

PROPOSITION 4.3. A(3,4) is true. 

Proof. By the argument of Proposition 4.2, we know that the assertion 
holds if there is a point class whose size is coprime to 21; so suppose not. By 
Lemma 2, there is a class vi’, of size vi E 1 (mod 7), and a class (Y2 of size 
v2 = 1 (mod 3). Thus we have vi = 15 (mod 21), v2 - 7 (mod 21) and 211 vi 
for i z 3. Also, w, = 21x, for each i, where xi a 3 (by Proposition 3.4) and 
zx, = 17. 

We cannot have v2 = 7, since then at most 21 lines would meet Y?~ more 
than once. 

Suppose vi = 15. No line meets ‘pi in three or more points, since there 
could be at most 35 such lines. So 105 lines (secants) meet ?‘, in two points, 
and 105 lines (tangents) meet it in one point; each set is a single line class. We 
now have (x,)=(5,5,7) or (5,5,3,4), while (vi)=(15,28,42), (15,49,21) or 
(15,28,21,21). Now, since 

5x2lx 20”~‘IIV, _ 

21’rIx, 
- (5X2”)2, (**) 

the only possibility is s = 3, (vi) = (15,49,21). Now Y2 cannot meet any 
secant or tangent, since the equation VII = AB shows that 7 1 x, for any line 
class whose lines meet ?3 
secants and 105 X 4/21= %O 

Thus each point of ~3. lies on 105 X 3/21= 15 
tangents, which is clearly impossible. 

For ui > 15, the possibilities for (vi) are (36,28,21), (36,49), or (57,28). 
All are easily eliminated using ( * * ). n 

Using similar arguments we have verified A(3,7). We do not give details 
here. In particular, A(3, q) holds for all q < 9. 
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5. ORBITS OF COLLINEATION GROUPS 

We consider collineation groups of PG(n, q), n 3 3, having equally many 
point orbits and line orbits. 

PROPOSITION 5.1. Let G be a reducible collineation group of PG(n, q), 
n > 3, with equally many point and line orbits. Then either 

(i) G fixes a hyperplane H and is transitive on the lines of H; or 
(ii) G fixes a point p and is transitive on the planes through p (or possibly 

both). 

Proof. We observe first that if G is any group with the stated property, 
then any supergroup G, also has this property. For, in the notation of Section 
2, the condition is equivalent to the assertion that any Ginvariant function in 
V, lies in R(a), and any G,-invariant function is of course Ginvariant. 

Suppose first that G fixes an r-space W with 0 < r < n - 1. Then the 
supergroup G, consisting of all collineations fixing W has two point orbits (W 
and its complement), and three line orbits (lines in W, those meeting W in a 
point, and those disjoint from W), a contradiction. 

Suppose next that G fixes a hyperplane. Let G, be the supergroup of G 
obtained by adjoining all elations with axis H. (Note that G, has the same 
action on H as G does.) Let G have rl point orbits and rz line orbits in H. 
Then r2 a rl. Now G, has 1+ r1 point orbits and rl + rz line orbits on the 
whole space, since the elation group acts transitively on the complement of H 
and on the set of lines meeting H in any given point. By the first paragraph, 
l+r,=r,+r,, whencer,=r,=l. 

The case when G fixes a point is dual. n 

PROPOSITION 5.2. Let G be an irreducible collineation group of PG( n, q), 
n > 3, with equally many point and line orbits. Zf A(3, q) is true, then G is 
line-transitive. 

Proof. The orbits of G form a symmetric tactical decomposition. n 

REMARK. The case q = 2 of Propositions 5.1 and 5.2 has been obtained 
independently by Saxl [4], who considered the more general problem of 
Steiner triple systems admitting groups with equally many point and triple 
orbits. 
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